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ABSTRACT 

Electron impact mass spectra of several 5- and 6-mem- 
bered P-heterocycles having a tertiary phosphine oxide 
or phosphinic ester function (5-1 1) reveal the loss of 
the phosphorus-containing moiety formulated by 
P(O)Y+IT', Y =Ph, Bu, EtO. In the case of the P- 
phenyl hexahydrophosphinine oxide (91, the loss of 
the oxophosphine fragment is as  intense as 100% on 
the relative scale. A 2,5-dihydro-1 H-phosphole oxide 
having a sterically demanding aryl group on the phos- 
phorus atom (12) undergoes thermal fragmentation at 
250°C to result in the formation of oxophosphine 14. 
0 John Wilev & Sons, Inc. 

INTRODUCTION 
Oxophosphines (R-P = 0) and phosphenous acid de- 
rivatives (e.g., RO-P = 0) and their sulfur-containing 
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analogues form an important group of low-coordi- 
nate phosphorus species that may arise from the 

220-255'C [Ph-P=O] 

4 MS 1 

SCHEME 1 [5,6] 

thermal fragmentation of phosphanorbornenes. In 
the presence of trapping agents, such as alcohols or 
butadiene derivatives, the intermediate oxophosphi- 
nes could be utilized for phosphorylation and in the 
synthesis of phosphole derivatives [ 1-41. 

Generally, thermal fragmentations show analo- 
gies to those observed in the mass spectrometer un- 
der electron impact (EI) conditions. This is also the 
case for P-phenyl phosphanorbornenes, as both the 
thermal examinations and the EI mass spectra re- 
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TABLE 1 

Compound M+ M-P(0) Y-+ P-fragment (%) Other 

Mass Spectral Fragmentation of P-Heterocycles 5-1 1 

4 2 .  

c?7Me OHp\Ph 

6 

274 
(8) 

? 

8 

OM’ 208 
02>Ph 9 (98) 

mMe 

P(O)Ph+H’+ 
125 
(18) 

P( O)Ph+H’+ 
125 
(22) 

P( O)Ph+H’+ 
125 
(48) 

P( O)Ph+H’+ 
125 
(4) 

P(O)Ph+H’+ 
125 

( 100) 

P( O)Bu’+ 
104 
(46) 

P(O)OEt+H’+ 
93 

(1 00) 

PO’+ 
47 

Ph+ 
77 

M-CI’+ 
239 

( 100) (25) (14) 

PO’+ 
47 

Ph+ 
77 

(35) (24) 

Ph 
77 

1 74-Me’+ 174-Cl’+ 
159 139 
(28) (18) (15) 

M-Me’+ C7H7’+ PO 

(28) (35) (34) 
47 193 91 

M-Me” M-C2HS7+ P(O)OH+H’+ 
161 147 65 
(30) (32) (91) 

“The sample contained 25% of 4-chlorod-methyl-1 -phenyl-l,2-dihydrophosphinine 1 -oxide. 
bDiastereomeric mixtures of ca. 80-20%. 
cThe mass spectrum was recorded on an MS 25-RFA instrument at 70 eV. 
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TABLE 2 HRMS Peak Match for the Ejected P-Fragments 

Compound Fragment Formula dz,,,,,,, mlg,,,,, 

5 P(O)Ph+H’+ C,H,OP 125.0159 125.0156 
6 P(O)Ph+H-’ C,H,OP 125.0158 125.0156 
7 P(O)Ph+H-’ C,H,OP 125.0160 125.0156 
9 P(O)Ph+H-’ C,H,OP 125.0156 125.0156 

10 P(0)Bu” C,H,OP 104.0394 104.0391 
11  P(0)OEt + H-’ C,H,O,P 93.0097 93.0106 

SCHEME 2 

L 
m/z=250 

13 

14 

If 
I T 7  [14 + H]’ 

mIz=25 1 

vealed loss of the bridging phosphorus moiety in a 
two-coordinate form. Thus, dimer la  loses Ph-P = 0 
in the range of 220-255 “C (Scheme 1) [5], while the 
mass spectrum of phosphanorbornene l b  shows a 
strong signal (20% relatively to the base peak) for the 
species Ph-P = 0” as confirmed by high-resolution 
mass spectrometry (HRMS) (Scheme 1) [6]. 

During our work with 5- and 6-membered P-het- 
erocycles, it was often experienced that the mass 
spectral fragmentation involved loss of the phospho- 
rus moiety. Because of this, we decided to examine 
systematically the fragmentation of some of their 
representatives having a tertiary-phosphine oxide or 
phosphinic ester function and resulting in 
oxophosphines. 

RESULTS AND DISCUSSION 
The P-heterocycles studied were dihydro- 1 H-phos- 
phole 5 [7], phosphabicyclo[3.1.0]hexane oxide 6 [S], 
1,2-dihydrophosphinine oxide 7 [9], 1,4-dihydro- 
phosphinine oxide 8 [lo], and hexahydrophosphin- 
ine oxides 9-11 [11,12]. 

The EI mass spectra of the P-phenyl-substituted 
heterocycles (5-9) showed that the ejection of the 
P(0)Ph moiety was indeed remarkable (Table 1). The 
P-fragment P(O)Ph+H”, m/z = 125 could be ob- 
served in all cases, but with variable intensities. In 
the mass spectrum of hexahydrophosphinine 9, it 

was as intense as loo%, while in that of 1,4-dihydro- 
phosphinine 8, it was only of 4%, being the M- 
P(0)Ph” fragment, the base peak, in the latter case. 
In the case of dihydrophosphole 5 and dihydrophos- 
phinine 7, relative intensities of the P(O)Ph + H” 
and the M-P(O)Ph’+ fragments were comparable. 
The mass spectrum of phosphabicyclohexane 6 re- 
vealed a P(0)Ph + H” peak of 22%. Elemental com- 
position of the P-fragments was confirmed by HRMS 
peak matches in all cases (Table 2). The structures 
of the ejected P-fragments were also confirmed by 
mass analyzed ion kinetic energy spectra (MIKES) 
and by spectra obtained by the collision induced de- 
composition (CID) technique, as they clearly showed 
that the fragments are stabilized by the loss of C,H, 
to give the PO species (Table 1). 

The increased ability of the phenylhexahydro- 
phosphinine (9) to lose the P-moiety under EI mass 
spectral conditions prompted us to examine two 
other derivatives also. The P-n-butyl and the P-eth- 
oxy derivatives ( 10 and 1 1, respectively) fragmented 
to result in the corresponding P-moieties (46% and 
100% relative intensities, respectively) (Table 1). El- 
emental compositions of these fragments were con- 
firmed by HRMS (Table 2). 

Mass spectral behavior of 1 -(2,4-di-t-butyl-6- 
methylphenyl)-3-methyl-2,5-dihydro- 1 H-phosphole 
1-oxide (12) [ 131 was also studied. The EI mass spec- 
trum obtained at 150 “C revealed the P(0)Ar’  
fragment (13) (m/z = 250) with a relative intensity 
of 64% (with M+ (mlz = 318) being the base peak 
[13]). Interestingly, the CI mass spectrum of 12, ob- 
tained at 250°C in a special range of pressure, re- 
vealed not only M + H (m/z = 319), but also P(0)Ar 
+ H (m/z = 251). Appearance of the latter species 
can be explained by assuming that the ejection of 
P(0)Ar (14) precedes the protonation (Scheme 2). 
This also means that dihydrophosphole 12, having a 
sterically demanding aryl group on the phosphorus 
atom, can be pyrolyzed at 250°C to release the oxo- 
phosphine (14) moiety. The details and extension of 
this process are examined further and the results will 
form the subject of another paper. The other P-het- 
erocycles (5-1 1) could not be involved in similar pyr- 
olyses at 250°C under CI conditions, indicating the 
special role of the sterically demanding P- 
substituent. 

Mass spectral fragmentation of the P-heterocy- 
cles studied (5-12) encourages us to try to utilize 
these compounds in preparative scale phosphoryla- 
tions. It is of interest that not only phosphanorbor- 
nene derivatives, but also simple 5- and 6-membered 
P-heterocycles are capable of losing the P-fragment 
in a low-coordinate form. 
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EXPERIMENTAL 
The P-heterocycles were prepared as described ear- 
lier [7-131. EI mass spectra were obtained on an MS- 
902 instrument, while the MIKE and the CID spectra 
were recorded on a ZAB-2SEQ spectrometer. All 
spectra were obtained at 70 eV. In the case of CID 
measurements, argon was the collision gas, the 
transmission being 80%. The CI mass spectrum was 
recorded on an MS 25-RFA instrument (with 
isobutylene). 
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